钱晓华
长聘(Tenured)副教授、博士生导师。曾为美国德克萨斯大学生物医学信息学院助理教授。吉林大学电子工程和美国杜克大学医学物理专业联合培养博士,并在美国维克森林大学医学院接受博士后训练。现任上海市生物医学工程学会生物医学信息专委会秘书长。目前主持国自然面上(2021,2023)、上海市面上、省级重点研发/科技转化课题、企业横向以及医工交叉等课题,作为骨干参与张江重大项目和上海交大重大项目STAR计划等。
实验室(Medical Image and Health Informatics Lab,MIHI)主页:
1. 主要研究兴趣:
医学图像处理与分析,机器学习与深度学习的算法研究,包括图像(视频)的细粒度分类与预测,医学图像的检测与分割,以及健康大数据挖掘与分析;主要解决的技术挑战:小样本和细粒度分析,模型的稳定性与泛化性,以及高维数据挖掘(特征选择)与分析。
2. 主要研究课题:
1)胰腺癌临床诊断与治疗全过程的影像智能算法体系研究,包括胰腺癌筛查与早期诊断,胰腺癌检测与分割,胰腺癌淋巴转移/良恶性的分析和预测,以及胰腺癌手术可切除性分析等。
2)运动功能视频评估的核心算法体系研究(例如,帕金森病运动迟缓、震颤、僵直、站立平衡和步态等),实现“运动障碍”与“姿势异常”的自动检测与分析,以及在临床诊断与评估、远程医疗和居家管理等方面的应用,并拓展到脑瘫、斜颈、中风、认知障碍等疾病的视频自动评估。此外,还开展运动与认知、运动与康复的评估与干预研究。
欢迎相关课题合作(邮件联系)!
近三年代表作(第一单位+主要通讯作者(排最后)):
(Source codes are available at https://github.com/SJTUBME-QianLab)
1. J. Qu#, X. Xiao#, X. Wei*, X. Qian*. A Causality-Inspired Generalized Model for Automated Pancreatic Cancer Diagnosis. Medical Image Analysis, 03, 2024.
2. X. Chen#, W.Wang#, Y. Jiang#, X. Qian*. A Dual-transformation with Contrastive Learning Framework for Lymph Node Metastasis Prediction in Pancreatic Cancer. Medical Image Analysis, 85: 102753, 2023.
3. J. Qu, X.Wei*, X. Qian*. Generalized Pancreatic Cancer Diagnosis via Multiple Instance Learning and Anatomically-Guided Shape Normalization. Medical Image Analysis, 86: 102774, 2023.
4. R. Guo, H. Li, C. Zhang, X. Qian*. A Tree-Structure-Guided Graph Convolutional Network with Contrastive Learning for the Assessment of Parkinsonian Hand Movements. Medical Image Analysis, 81: 102560, 2022.
5. J. Li#, L. Qi#, Q. Chen, Y. Zhang, X. Qian*. A Dual Meta-Learning Framework based on Idle Data for Enhancing Segmentation of Pancreatic Cancer. Medical Image Analysis, 78: 102342, 2022.
6. W. Fu#, H. Hu#, X. Li, R. Guo, T. Chen, X. Qian*, A Generalizable Causal-Invariance-Driven Segmentation Model for Peripancreatic Vessels. IEEE Transactions on Medical Imaging, 05, 2024.
7. X. Li#, R. Guo#, J. Lu#, T. Chen, X. Qian*. Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography. IEEE Transactions on Medical Imaging, 42(6): 1656-1667, 2023.
8. X. Song#, J. Li#, X. Qian*. Diagnosis of Glioblastoma Multiforme Progression via Interpretable Structure-Constrained Graph Neural Networks. IEEE Transactions on Medical Imaging, 42(2): 380-390, 2023.
9. X. Tang, R. Guo, C. Zhang, X. Zhuang*, X. Qian*. A Causality-driven Graph Convolutional Network for Postural Abnormality Diagnosis in Parkinsonians. IEEE Transactions on Medical Imaging, 08, 2023.
10. X. Tang#, C. Zhang#, R. Guo, X. Yang*, X. Qian*. A Causality-Aware Graph Convolutional Network Framework for Rigidity Assessment in Parkinsonians. IEEE Transactions on Medical Imaging, 07, 2023.
11. X. Chen, Z. Chen, J. Li, Y. Zhang, X. Lin, X. Qian*. Model-driven deep learning method for pancreatic cancer segmentation based on spiral-transformation. IEEE Transactions on Medical Imaging, 41(1): 75-87, 2022.
12. X. Chen, X. Lin, Q. Shen, X. Qian*. Combined Spiral Transformation and Model-Driven Multi-Modal Deep Learning Scheme for Automatic Prediction of TP53 Mutation in Pancreatic Cancer. IEEE Transactions on Medical Imaging, 40(2): 735-747, 2021.
13. R. Guo, X. Shao, C. Zhang, X. Qian*. Multi-scale Sparse Graph Convolutional Network for the Assessment of Parkinsonian Gait. IEEE Transactions on Multimedia, 24: 1583-1594, 2022.
14. Z. Xie#, R. Guo#, C. Zhang, X. Qian*. A Clinically Guided Graph Convolutional Network for Assessment of Parkinsonian Pronation-Supination Movements of Hands. IEEE Transactions on Circuits and Systems for Video Technology, 09, 2023.
15. R. Guo, J. Sun, C. Zhang, X. Qian*. A Contrastive Graph Convolutional Network for Toe-Tapping Assessment in Parkinson’s Disease. IEEE Transactions on Circuits and Systems for Video Technology, 32(12): 8864-8874, 2022.
16. R. Guo#, J. Sun#, C. Zhang, X. Qian*. A Self-Supervised Metric Learning Framework for the Arising-from-Chair Assessment of Parkinsonians with Graph Convolutional Networks. IEEE Transactions on Circuits and Systems for Video Technology, 32(9): 6461-6471, 2022.
17. Xinyue Li#, Rui Guo#, Hongzhang Zhu#, Tao Chen, X. Qian*. A Causality-Informed Graph Intervention Model for Pancreatic Cancer Early Diagnosis. IEEE Transactions on Artificial Intelligence, 04, 2024.
18. R. Guo, X. Shao, C. Zhang, X. Qian*. Sparse Adaptive Graph Convolutional Network for Leg Agility Assessment in Parkinson’s Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12): 2837-2848, 2020.
19. J. Li#, T. Chen#, X. Qian*. Generalizable Pancreas Segmentation Modeling in CT Imaging via Meta-learning and Latent-space Feature Flow Generation. IEEE Journal of Biomedical and Health Informatics, 27(1): 374-385, 2023.
20. J. Li#, H. Zhu#, T. Chen*, X. Qian*. Generalizable Pancreas Segmentation via a Dual Self-Supervised Learning Framework. IEEE Journal of Biomedical and Health Informatics, 27(10): 4780-4791, 2023. (封面文章)
21. J. Li, C. Feng, X.Lin, X. Qian*. Utilizing GCN and Meta-Learning Strategy in Unsupervised Domain Adaptation for Pancreatic Cancer Segmentation. IEEE Journal of Biomedical and Health Informatics, 26(1): 79-89, 2022.
22. X. Song#, M. Mao#, X. Qian*. Auto-Metric Graph Neural Network Based on a Meta-learning Strategy for the Diagnosis of Alzheimer's disease. IEEE Journal of Biomedical and Health Informatics, 25(8): 3141-3152, 2021.
23. G. Xu, J. Reboud, Y. Guo, H. Yang, H. Gu, C. Fan*, X. Qian*, Jonathan M Cooper*. Programmable design of isothermal nucleic acid diagnostic assays through abstraction-based models. Nature communications, 13(1): 1-9, 2022. (共同通讯)
数据结构(工科平台,大一)
生物医学工程中的数据挖掘 (研究生课程)
1. 钱晓华; 李钧; 多模态医学图像分割方法、系统、存储介质及电子设备2020-02-24, 中国, CN2020101124914
2. 钱晓华; 陈夏晗; 基于多模态的深度学习预测方法、系统、介质及设备2020-02-18, 中国, CN2020100986849
3. 钱晓华; 陈夏晗; 深度学习中螺旋变换数据扩增方法、系统、介质及设备2020-02-18, 中国, CN202010098682X
4. 指导学生获2022年第七届amjs澳金沙门线路研究生“学术之星”提名奖(全校Top 20)
5. 指导学生获2023年amjs澳金沙门线路研究生“创新之星”
6. 指导学生获2024届上海市优秀毕业生
7. 指导博士、硕士研究生在2021、2022、2023年先后6人次获研究生国家奖学金(占学院推荐名额20%)
8. 指导学生获2023年“华为杯”第五届中国研究生人工智能创新大赛全国一等奖(4/1778)10. 指导学生获2022年/2023年上海市女大学生创新创业大赛一等奖/二等奖
11. 课题获2022年第一届医学人工智能创新创业大赛最具创新奖
12. 课题获2023年第二届医学人工智能创新创业大赛科研组价值项目(一等奖)
指导研究生毕业去向
1. 首届毕业博士生,2023年11月入职 西南交通大学,任助理教授
2. 首位出站博士后,2024年2月入职 杭州电子科技大学,任讲师
邮箱地址:xiaohua.qian@sjtu.edu.cn
联系电话:021-62932187
办公地址:徐汇校区教三楼南楼421室